Controlling Effective Introns for Multi-Agent Learning by means of Genetic Programming
نویسندگان
چکیده
This paper presents the emergence of the cooperative behavior for multiple agents by means of Genetic Programming (GP). For the purpose of evolving the effective cooperative behavior, we propose a controlling strategy of introns, which are non-executed code segments dependent upon the situation. The traditional approach to removing introns was able to cope with only a part of syntactically defined introns, which excluded other frequent types of introns. The validness of our approach is discussed with comparative experiments with robot simulation tasks, i.e., a navigation problem and an escape problem.
منابع مشابه
Controlling Effective Introns for Multi-Agent Learning by Genetic Programming
This paper presents the emergence of the cooperative behavior for multiple agents by means of Genetic Programming (GP). For the purpose of evolving the effective cooperative behavior, we propose a controlling strategy of introns, which are non-executed code segments dependent upon the situation. The traditional approach to removing introns was able to cope with only a part of syntactically defi...
متن کاملControl of Multivariable Systems Based on Emotional Temporal Difference Learning Controller
One of the most important issues that we face in controlling delayed systems and non-minimum phase systems is to fulfill objective orientations simultaneously and in the best way possible. In this paper proposing a new method, an objective orientation is presented for controlling multi-objective systems. The principles of this method is based an emotional temporal difference learning, and has a...
متن کاملOptimization of majority protocol for controlling transactions concurrency in distributed databases by multi-agent systems
In this paper, we propose a new concurrency control algorithm based on multi-agent systems which is an extension of majority protocol. Then, we suggest a clustering approach to get better results in reliability, decreasing message passing and algorithm’s runtime. Here, we consider n different transactions working on non-conflict data items. Considering execution efficiency of some different...
متن کاملA New Correlation Based on Multi-Gene Genetic Programming for Predicting the Sweet Natural Gas Compressibility Factor
Gas compressibility factor (z-factor) is an important parameter widely applied in petroleum and chemical engineering. Experimental measurements, equations of state (EOSs) and empirical correlations are the most common sources in z-factor calculations. However, these methods have serious limitations such as being time-consuming as well as those from a computational point of view, like instabilit...
متن کاملSolving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000